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REMARKS ON DE LA VALLéE POUSSIN MEANS AND CONVEX
CONFORMAL MAPS OF THE CIRCLEi/
By

G, Pélya and I. J. Schoenberg

INTRODUCTION

The aims of the present remarks are similar to those pursued by L. Fejér
in several papers in the early nineteen thirties and well described by the

title of one of his papers: Gestaltliches ub~r die Partialsummen und ihre

Mittelwerte beil der Fourjerreihe und der Potenzreihe. However, the means
which we use to realize these aims are different. Fejér discovered the re-
markable behavior of certain Cesaro means, especially that of the third Cesaro
neans for even or odd functions of certain simple basic shapes. In what
follows we show that the de la Vallee Poussin meens possess such shape-pre-
serving properties to a much higher degree thanks to their variation-diminish-
ing character.

Before stating our results, we have to explain a few concepts.

Variation-diminishing Transformations on the Circle. If al,aa,...,an
is a finite sequence of real numbers we shall denote by v(a) or v(a ) the
number of variations of sign in the terms of thic sequence. By the number

vc(a) of cyclic variations of sign of our sequence we mean the following:

If all &, = 0 we set vc(a) =0 . If a # 0 we set

1/
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vc(a) = V(ai’ai+l""’an’ al,az,...,ai_l,ai) 5

If we think of the a,6 as arranged clockwise in cyclic order, 1t becomes
obvious that vc(a) does not depend on the particular non-vanishing term ay
we start with. Notice that vc(a) is always an even number. Let now f(t)

be a real-valued function of period 2n . Let tl’t2""’tn be such that

(1) b <ty <..o <t <ty o+ 2n

We may now define the number vc(f) of cyclic variations of sign of f(t) by

(2) v (f) = sup v (£(t,)) ,
the supremum being taken for all finite sequences [tv] subject to (1). Also
vc(f) , 1f finite, is even. Thus vc(sin t) = 2, vc(sin ot) = &4, vo(lsin t|) = O.

We now describe what is meant by a variation diminishing transformation

on tie circle (Sec [1h]). Such a transformation is characterized by a non-
negative welght-function, or kernel, @(t) , of period 2x , of bounded vari-

ation and normalized by the conditions

(Q(t+0) + a(t-0))

—
(@)
~—
)
i
e}
—
(24
~—
fon
ct
1}
[
-

o)
—
ct
~
]
o) o

[ )1

Let f(t) be an arbitrary periodic function, with period 2n , real-valued

and integrable (cf.Art. 1.2); let us form its convolution transform




-s

-3-

2n
(k) g(t) = 2~ | a(t-v)e(r)ar .

We say that this transformation is variation diminishing provided that the

inequality

(5) v (8) < v (f)

holds for each f . We mean the same thing if we say that Q(t) is a

variation diminishing kernel.

V-nieans. One of our uims is to show that the de la Vallée Poussin

kernels

the Fourier expansion of which has the simple form

n n
(6') wn(t) = (;h) E;%.(sfy)eivt = 142 E;: (n?i)l (n?i)! cos Yt
n

possess the property of being variation diminishing for n = 1,2,3,...

For q(t) = un(t) the transformation (4) becomes

o 2n
(7 Vn(t) = % 51; (2 cos t—;_-T- 2nf('r)d'r s




and defines the de la Vallée Poussin means, or simply V-means, of the functiow
f(t) . Tt 1s easily verified (See [14] and [5], p. 15) that Vn(t) is a
trigonometric polynomiel of an order not exceeding n , which is readily ex

pressed in terms of the Fourier coefficients of f(t) . Indeed, if
[os)

(8) £(t)~ che“t (c, =¢)

-n

we obtain by convoluting (6') and (8)

(9) I = g(fj‘y et
n

In terms of the real Fouriler series ( 2cv =a, - ibv)

o)
(10) £(t)~ % a fz::_(a cos vt + b, sin vt)
o 1V v
we find
_n
1 1 - 2n
(11) Vn(t) =58, +—75= ‘L—‘(n+v) (aV cos Yt + bv sin wt)
) 1
or
n
1 n! n! .
(12) Vn(t) =3 8, +j£;; DR CEDE (av cos Yt + b, sin Vt)



Main Results. Our principal result is the following

THEOREM 1. The inequalities

(13) v (v ) <2 (v,)) < v (F)

hold for an arbitrary integrable function f(t) . (We let Zc(Vn) denote

the number’ of real zeros of Vn(t) within a pericd including multiplicities.)

The first inequality vc(Vn) < Zc(Vn) , which is obvious, shows that
Theorem 1 states considerably more than the variation-diminishing property
of the kernel wn(t) which amounts to vc(Vn) < vc(f) . In Part I we give
two proofs of Theorem 1, both based on a theorem due to Sylvester ([12]).

The first proof uses t..e result of Sylvester's theorem, the second uses the
method of one of its proofs.

In Part II we discuss applications of the variation-diminishing property
of V-means. Theorem 1 gives a useful lower bound for vc(f) if a certain
number of Fourier coefficients of f(t) are known. It is shown how this im-
plies easily some results by Sturm, A. Hurvitz, Palya and Wiener. In Art. 5
we study the simplest classes of discontinuous periodic functions; the be-
havior of their V-means is described by Theorems 3 and 4. Fejér's Theorem
III ([2], p. 86) has an analogue for V-means which is our Theorem 5 below.

A1l this refers to retl periodic functions. However, the shape-preserving

properties of V-means appear to best advantage if applied to complex-valued

periodic functions.
Let us siate here the main result of Art. 6 concerning convex maps of

the circle. Let K denote the class of those "schlicht" power series



@
> ayz“ which map |z| <1 onto some convex domain. Let
Y
®
(14) f(z) =chz" (cl =1)
1
-
= _l_.> e v
(15) —n(z) = on, — (n+v) v
) =

be the de la Vallée Poussin mean, or V-mean, of the power series (lh). It is

known that the partial sums of the series (1) need not belong tc K . G. Szego
has shown ([13]) that if F(z) € K then all partial sums of (14) are "schlicht"
in the circle and map it |z| <1/4 onto convex domains, and that 1/4 1is here
tre largest constant. That the V-means belong tc K 1s one part of the follow

1
THEOREM 2. For
(16) f(z) € K

it is necessary and sufficlent that

AIsD) y_n(z) e K for n= lg2,..:
The sufficlency part does not even assume the regalarity of (14) in the
unit circle, as for any formal power series (14) the assumptions (17) imply

that (14} converges and defines an element of K .



Additional Results. Parts I and II are followed Iy two Appendices which

contain relsted materials, but are almost independent of the main text.
Appendix I brings out a certain analogy between approximations to two
kinds of functions: periodic functions and functions defined in a finite

interval. It will be shown that the shape-preserving properties of the V-means,

vhich approximate functions of period 2z , are analogous to the shape-
preserving propertles of the so called Bernstein polynomials which approximate
functions defined in [0,1] . For the definition of these polynomials see
Art. 7 where also their variation-diminishing property (Theorem 6) is stated
and proved.

Appendix II is devoted to a conjecture on power series which represent
a conformal one-one mapping of the unit circle onto a convex domain. The
conjecture is that the Hadamard composition, or convolution, of two such
power series is again a power series of the same kind (See Art. 9). We do
not know whether this conjecture is true or not (it seems to us more likely

that it is true) but at any rate, in view of the partial results which we

have obtained (Art. 10 and 11), the problem to 1 >ve or to disprove the con-

Jecture seems to us worth while.



PART I
THE DE LA VALLEE POUSSIN SUMMATION METHOD IS

VARIATION-DIMINISHING

1.1 A theorem of Sylvester. In the course of his work on Newton's rule of

signs J. J. Sylvester discovered a remarkable theorem concerning the real

zéros of polynomials of the form

m

) e, (x-¢ )%

v=1

(See [12], p. 408, [7] and also [9], vol. 2, Problem 79, p. 50). In Sylves-
ter's theorem 94 may assume any positive integra). value, a fact which is im-
portant for its proof which proceeds by induction in q - We need Sylvester's

result only for even qd = 2n and state it as

LEMMA 1. Let

<E, < ... <E (m >2) ,

be given reals and consider the polynomial

~m
P(x) =) e, (x-¢ )2
v=l

(with real ¢, # 0 for all v ), which W€ assume not to vanish identically.

Then

Z(P; - <t <w) < v(cl,ce,...,cm,cl) s




where the left side denotes the number of real zeros of P(x) while the

right side is the number of varlations of sign in the sequence displayed.

The significance for us of Sylvester's result i1s that it easily yields

the following

LEMMA 2. Let

() - <t <7, < el <T <, (m>2) ,

be given reals and consider the trigonometric polynomial

(1.2) (g = Z ¢,(sin 5

(for real which we ascume
Then

Z2(Ty - n <t <n)< v(cl,cz,...,cm,cl)

We introduce the new variable

X = o) L (- n <t <n)

(1.3) = tan £

whose range is - © <x < @ The images of the T, ve denote by

T

v
gl) =ta.n?-
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and these give rise to the identities

t-1 2 (x-§,

¢ i (1+x2)(1+§f)

(sin

which are easily verified. Thus (1l.2) may be expressed in terms of x by

m

1 2
T(t) = m‘)—n ; e, 7y (x=¢ ) =t

where the 7, are positive and so Lemma 2 immediately follows from Sylves-
ter's Lemma 1.

We now recast our result in the following more useful form:

LEMMA 3. Let « T (m>2) be m points in counter-clockwise

1’12’..., m =

order on the circle such that Tm should not overtake or even reach Tl 3

We may express these regquirements by assuming that

(1.4) T < Ty <eee ST ST+ 2n .
Let
m
o,
(1.5) T (t) = £ cow (t-1,) , (T(t) #£0) ,
n J=1 yn v

where at least two amocng the c, do not vanish. Then




=115

(1.6) (T ) <v(c,) .

Indeed, by omitting vanishing terms in (1.5) we may assume that c, # O
for all y . Moreover, a change of variable by t = t' + (n/2) will evi-
dently not alter the left hand side of (1.6). This implies that in our
statement (1.6) we may replace Tn(t) by the polynomiel T(t) defined by
(1.2). By a second appropriate transformation t = t' + ¢ we may replace

the conditions (1.4) by the more restrictive inequalities (1.1), at the same

time making sure that T(n) # O . But then

Zc(Tn) = ZC(T) = Z(T; -n <t <x) < V(Cl’c2""’cm’cl) = vc(cy)

and Lemma 3 is established.

1.2. On the number of variations of a function. The reader may interpret

the term "integrable" either according to the definition of Riemann or to
that of Lebesgue, or to any other definition that invclves the familiar
standard properties of the integral. We emphasize the following property:

If f(t) and g(t) are integrable and f(t) >0 1in the interval I , then

j‘f dt = 0

I

implies

ngdt:O
i
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We consider now a real-valued periodic function f£(t) with the period
2x , we assume that it 1s integrable in the interval (0,21) and that vc(f),
as defined in the Introduction, is finite. We consider t (mod. 2x), that
is, we consider t as attached to a point on the periphery of the unit
circle. If vc(f) = 2k , we can, as easily seen, divide the circumference

of the unit circle into 2k consecutive arcs

(1'7) Il,Ig,'oo,I2k
such that
(1.8) (-1)°L £(t) >0 1n I

fr v=1,2,...,2k ; the arcs (1.7) may be open, or closed, or open from one
5. :2 and closed from the other, scme of them may even reduce to a single
point. Now, we normal+z. f(t) , that is, we change f(t) (if necessary) as
follows: we set f(t) = 0 in all points of any interval (1.7) along which
jf dt vanishes; especially, if an interval listed under (1.7) consists in
Just one point, we set f£(t) = O ia that point. This normalization cannot
increase (but may decrease vc(f) and leaves unchanged the V-means of f
(cf. the initial remark of this section). Therefore, it will be sufficient
to prove Theorem 1 for normalized functions. If, however, vc(f) = 2k for
a normalized function f£(t) , the intervals (!.7), constructed as above,

have the property




S3s

(1.8") =2 ) ff(t)dt >0 for =1,2,... 2k .
4
V

The foregoing remarks will be useful in the following proof of Theorem

1. Yet we do not need them in establishing the weaker inequality

(1.9) v(V.) <v (f)
for a Riemann-integrable function f .

Indeed, let us consider the integral

2n

V (t) = mn(t-T)f(T)dT

1
n 2n
o

and its approximating sums

1

=1 21V p(2ny

v =0

Lemma 3 and definition (2) imply

or

Since Vs m(t) —»Vn(t) for all t, as m - @ , the last inequality
b

S
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evidently implies (1.9). An "approximation argument" extending (1.9) to a

more comprehensive class of functions i1s easy, but hardly deserves to be

presented here.

1.3 A first proof of Theorem 1. The first inequality (13) is immediate

and so the essential assertion of Theorem 1 consists in the inequality
(1.10) zc(vn) _<_vc(f‘) .

If vc(f) >2n there is nothing to prove; also if vc(f) = 0 for then

Vn(t) clearly can not vanish. Let us assume, then, that £(t) is "normalized"

according to section 2, and that

and let us Aivide the unit o~irecumfercnce into the 2k comnective ares (L.7)
which satisfy the conditions (1.8) and (1.8'). We may then write the Fourier

coefficients of f(t) 1irn the form

2n . A
S oo f(t)dt = }__ i 5 I£(t)|at - Z -l-J [£(t)]at
° Tlo s=1 " VI s=1 " VI
2s-1 - 2s
k k
1 (2" NN 1
(1.11) a, = ;J f(t)cos vt dt=/ = [£(t)]|cos vt dt-Z; |£(t)|cos vt at,
o] 1 123_1 1 I2s
k k
1 (2 1 1
b, =~ | f(t)sin vt dt=) = | |f(t)|sin vt dt-Z— |£(t)|sin vt at.
Jo ARV 1 "Y1
2s-1 2s

(\J=l,...,n; O S t S 2“‘)
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Consider in the 2n-dimensional space E

bparametric form by

To the division (1.7) of the circumference into the ares IF

a division of T into arcs

(1.12) r.,r

l, p-’...,r‘2k

where we think of the arc 1 g5 carrying the positive mass

(2s13) }j [£(t)dt

(1.14) % |f(t)|cos vt dt, % [£(t)|sin vt dt
I, Iy

By a well known theorem of Carathéodary the mass (1.13) of PH

concentrated in a finite number of pointg along T

same centroid (1.1h). 1hig we do for each of the arcs (1.12).

all these points in cyclic‘qrder along [ we obtailn points

the closed curve
2n

I' defined in

s corresponds

(v = Liyse z wymd)

may be

n S0 as to produce the

Arranging
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11,12,..., .
and correspondi:g coefficients

ClsCyune,C
" =on ’“m

l o
)f 1 c, >0 when T, belongs to In - In view of the relations

J J

where (-1

(1.11) we obtain

m m m
(1.15) a = 2;_ ¢, , & = zz: c,cos yT, , b = E:: c,sin vt,
J v 3=1 J J

(1.16) v(e,) = 2k = v (£) .

m
&
(1.17) F(t) =% / cdwn(t-rj)
J=1
and claim that
(1.18) F(t) = Vn(t) .

Indeed, by (6)



and interchanging the
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w (t'TJ
n
n. n!
' %;1 T e et gl
v ; :
+ [;;1 (n?;)g (ni;)l (cos vt cos vT, + sin vt sin vrj)},

order of summations, by (1.15)

n
1 Yy Tigt n!
F(t) = 5 &, +t;:i IR CTOE (a, cos vt + b, sinvt)
which is identical with Vn(t) by (12). Finally, by (1.17), (1.18), (1.16)
and Lemma 3
Zo(Vy) = Z(F) S v (ey) = v ()

which proves the inequality (1.8).

2

A Second Proof of Theorem 1.

The foregoing proof is based on Sylvester's

result which we stated as Lemma 1.

We shall now prove Theorem 1 without

assuming the krowledge of this result.
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We transform (7) by changing the variables. Setting

(VIR
-

x = tan  , £ = -cot

we obtain from (7) by straightforward computation (by steps similar to those

exhibited following (1.3)) tha“

@
2,.2u
n ' -
(2.1)  (1+x°) V(2 arc tan x) = | (x-g)2® (o) 2 £(-2 arc cot £) 5,
n (2n)!n (l+§2)n+l
-
This relation is contained in the more general
00
(2.2) P(x) = |  (x-£)"A(&)as
-

lo's)
where m 1s a positive integer and the integral (f gmA(g)dg is absolutely
-0

convergent; P(x) 1is by the structure of the formula (2.2) a polynomial of
degree not higher than m .

We consider the following quantities connected with (2.2):

N the number of real zeros of P(x) , counted with mult.iplicity;

v the number of variations of sign of A(&) in the open interval
-0 <t <o ;

sg A(oo) 1s the constant sign, different from O , that A(E) possesses

whenever it is different from O 1in a suitably chosen interval w <& < ® 3



~11G-

we assume here that A(&) 1is normalized in the sense of Art. 1.2;
sg A(-00) 1is similarly defined;
N = 3lsg A(w)-sg(-1)"A(-00) |

so that M 1is either 0O or 1 ;

V=V+7] .

In fitting (2.1) into the more general pattern (2.2), we can aszume
without loss of generality (by rotating the circle through an appropriate
angle) that Vn(n) # 0, that f(t) is normalized in the sense of Art. 1.2,
and that O 1is an interior point of one of the intervals of constant sign
corsidered there, so located that, for some positive € , f(t) takes some
non-vanishing values in both intervals -€ <t <(Q and 0<t < €

Under these circumstances, in the particular case (2.1),

m=2n ,
A(-0) = A() ’
T|=O,

and co Theorem I is an immediate consequence of

LEMMA 4. N <V .

We need several steps to prove Lemma 4.

(a) There are some particular cases in which Lemma 4 is obvious.

If P(x) vanishes identically there is nothing to prove since in this

case, by definition, N = O .
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If V >m there is nothing to prove since, of course, N<m.

If v=0 and m is even (so that V = n = 0) P(x) will have for all

0 as 1t should be according

real x the constant sign of A(t) and so N

to Lemma k4.
1) m-1 is even and so

If v=0 and m 1is odd (so that V = 7

Pl(x) = | (x-8)"lma(e)ae

has a ccns*ant sign for all x , by what we have Just said. Therefore, P(x)

is monotone and N = 1 which agrees with Lemma 4.

And so we may and shall assume in the sequel that

>
s
'._a
I A
<
A
<
IA
=]
3

(b) Let c be a point of change of sign for A(t) ; that is, c 1is

the common endpoint of two contiguous intervals in each of which A(&) keeps
a constant sign, yet the two signs (cf. Art. 1.2) ccnsidered are opposite.

The number of such points is v and we have assumed (2.3).

We assert that at least one of the m-1 quantities
' m-1
P1(~),"(e), ..., B B (c)

is different from O . If this assertion were wrong, the integral



<21 =

Q0
(t-c) A(s)as

-00

would vanish for y = m-1,... 2,1 and, as a linear combination of these

integrals,

(00
(2.4) (&-c)Q(E)A(L)dE

-0

would vanish for any polynomial @Q(t) of degree not exceeding m-2 . Yet

this is certainly false if
(2'5) Q(g) = (X-Cl)(x-cz) O G0 (x-cv-l)

where C;Cy5Cyy-v-,C _; &re all the points of change of sign of A(%) ;
observe (2.3) in computing the degree of Q(&) . 1In fact, with (2.5) the
integrand in (2.4) has a constant sign and so the integral (2.4) cannot
vanish.

We have seen, by the way, that under the condition (2.3) P(x) cannot
identically vanish.

{(e) Set

(2.6) 6(x) = P(x)(x-c)™"
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(2.7) P*(x) = (x-¢)™1(g'(x)

= (x-¢)P'(x) - mP(x)

Q0
= | (x2)™Lax(e)ae
V=00
where
(2.8) A*(E) = m(g-c)A(E)
and

let N¥,m*,v*,n*,V* be just so connected with P¥(x) and A’{%) as N,m,

vsM and V are with P(x) and A(t) . Obviously

m* = mel N
v¥ = v-1
(2.9) sg A*(® ) = sg A(w)

sg A¥(-0 ) = -sg A(-00)

and so
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Combining this with (2.9), we obtain
(2.10) V¥ =V -1 .
We intend to prove Lemma 4 by mathematical induction with respect to V .
In fact, we have already proved Lemme 4 in the particular case V = O under
(a) . We therefore assume V >1 , cf. (2.3), and that Lemma 4 has been proved
for the preceeding value (2.10), and so we take for granted that

(2.11) N* < V*

(d) Let k denote the number of those zeros of P(x) that coincide

with the point ¢ ; obviously k >0 , and, by (b),

Let k* denote the number of those zeros of P*(x) that ccincide with c .

We set

(2.13) N=Kk+ £, N¥=Fk¥ 4+ f* ;
£ and #* , defined by (2.13),
enumerate those zeros of P(x) and P#*(x) , respectively, that fall into one

or the other of the two open intervals -~-00 < x <c¢c and ¢ <x <0
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We note the critical term of the expansion of P(x) around the point

p(K),

k
B(x) = kg)(x'c) +oeee P(k)(c) $0 .

By (2.6) and (2.12), g(x) has a pole at the point c¢ and (2.7) ylelds

k
(k-m)P(kf(c>(x-c> .

P*¥(x) = &

We infer that P*(x) has Just as many zeros at the point ¢ as P(x) :
(2.14) k¥ = k .

By the way, we have seen that P¥(x) does not vanish identically.

(e) It remains to consider the real zeros different from c¢ ; P(x)
or, which is the same, G(x) has £ such zeros, and P¥(x) or, which is
the same, G'(x) has f* such zeros. These zeros are distributed some-
how in the two open intervals, -0 <x <c¢ and ¢ <x<® .

By the theorem of Rolle, in each of these intervals at most one zero

can be lost in the passage from G(x) to G'(x) , so that
(2.15) >4 -2

this information 1s correct, but insufficient for our purpose. We chall
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obtain, however, additional information by using the following remark (cf.([9],

vol. 2, p. 39, problem 1L4).

No zero can be lost in the passage from G(x) to G'(x) in the interval

(-c0,c) if
(2.16) sg G(-00) = sg G'(-00)

and no zero can be lost in this passage in the interval (c,o00) if

(2.17) sg G(o) = - sg G'(00) .

The signs mentioned in (2.16) and (2.17) refer to a certain neighborhood

of -00 or o and, a8 G(x) has only a finite number of zeros, they are

certainly different from O .

(f) We know, cf. (b), that the polynomial P(x) does not vanish iden-

ticaliy. We set

m m-1
(2.18) P(x) = b X + b X *oeee + b

and distinguish two cases.

Case T. If b =0, there is an s such that b =b, = ... = b =
_— o} o} 1 s-1

bs # O and so we easily find the initial terms in the expansions around oo:

0

b



In this case, both conditions (2.16) and (2.17) we are satisfied, and, by the

final remark under (e), we can improve (2.15) to

(2.19) 0© > 1 .

Case II. Now

]

A(E)at # 0 ,

u=-0Q0

(2.20) b

and the expansions around oo begin so:

me bo + bl
(2.21) G(x): bO +-———;————-+ oo
me bo + bl
(2.22) G'(X) - - ——2——' + o e
X
where
flee]
(2.23) me b, +b =m A(E)(c-t)as .
-0

We again distinguish two cases.
Subcase II,l1. If v=1, c¢ 1is the only point of change of eign of
A(t) , the integrand in (2.23) is of constant sign, and so the integral is

different from O .
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Subcase II,2. If v >2 , the integral (2.23) could vanish. Yet in
this case A(&) has at least another point of change of sign, ¢, , and I

say that (2 23) and

cacnot vanish simultaneously: 1n fact, their difference 1is

m(ec, ~-¢) A(t)dt = m(c -c)bo # 0

by our present assumption (2.20). Therefore, assuming that the point of change
was properly selected from the start, (which boils down to a proper choice of
notation), we may assume that (2.23) is different from O , also in the present
subcase.

Finally, in both subcases, we conclude from (2.21) and (2.22)
2 ) me bO + Db

X G'(x

1
= - #0
G(x bO

1lim
X-—)_tCD

and we see that Just one of the two conditions (2.16) and (2.17) is fulfilled.

Therefore, by the final remark under (e), we can improve (2.15) to

(2.2k) g > 18- 1



Thus, even in the less favorable of the two cases I and II,
(2.24).

we have
Combining this with (2.13) and (2.14), we obtain

N* >N -1

and hence and from (2.10) and (2.11) we obtain

V-l=vs>Nn>N-1

or V >N, which is the desired conclusion of Lemmsa 4.

The foregoing somewhat involved proof becomes more understandable if

it is compared with the proof for Lemma 1 given in [7]) or in [9], vol. 2, p. 50,
problem 79.



PART II
SOME APPLICATIONS OF THE VARIATION -DIMINISHING

PROPERTY OF V-MEANS

3. A theorem of Ch. Sturm and A. Hurwitz. Let f(t) be & real-valued,

integrable, periodiec function of period 2x . Let
1
(3.1) f(t) = 5 e, +/ (av cos vt + b sin vt)
be its Fourler expansion. Suppose that the partial sum of the nth order

(3.2) 5 (t) =

n
s &, +-2 l(av cos vt + b sin yt)
v:

Do) o

is known. What can we say about the number vc(f) of changes of sign of
f(t) 1in a period? An answer is immediate: Knowing (3.2), we can compute

(11), the nth V-mean of f(t) , and we must have

(3.3) vo(£) > 2 (V)

by Theorem 1.
The information provided by this inequality is strongest when the right
hand side attains its largest value 2n . There is a simple sufficient con-

dition for this eventuality which we record as

COROLLARY 1. If
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, 2 .21/2 _,en,, 2 .2 .1/2 .on,, 2 2 .1/
)(an-l+b )(a bn-z) + o 08

s x bn) & (l n-l) + (2 n-2+
(3.4)
2n 2 2,1/2
AGRICEL R SOl

th

then every function f(t) having (3.2) as the n partial sum of its

Fourier series, must chauge sign within a period at least 2n times.

Indeed, it is clear by (3.4) that the last term of the expression (11)
for Vn(t) so predominates that Vn(t) has 2n simple zeros, hence
Zc(Vn) = 2n . The statement now follows from (3.3).

We obtain a classical result ([3], pp. 572-57T4) as a very special case:

2 2
COROLLARY 2. If a =8 = bl = e =8 0= bn—l = 0, 8 + bn >0,

then vc(f) >2n .

The following is an equivalent formulation: If aﬁ + bi > 0 then

(3.5) vo(£(t) - 8, (8)) >2n .
This second formulation 1s especially interesting and intuitive because it
shown that the graph of the partial sum Sn_l(t) must cross the graph of
f(t) at least 2n times. Hurwitz's proof of Corollary 2 is direct and
elementary. However, his classical argument is no longer available to estab-
lish other special cases such as the following:

If
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n fo.e
f(t) = P E:: cos vt +; (a, cos vt + b, sin yt)
2 —_ TV Y
v=1 v=n+l
then
vc(f) >2n .
1 :
For in this case Vn(t) =3 wn(t) , hence Zc(Vn) = 2n so that (3.3) implies

the result. Such particular examples are easlily constructed and we see no other

way of proving them except by the fundamental irequality (3.3).

b, The simplest Polya-Wiener result concerning high order derivatives of
periodic functions. Let f(t) be a real function of period 2n which is

infinitely often differentliable. Let us conslder 1its zeros and also the zeros

of its successive derivatives. Counting multiplicities as usual we set

and assume all chese numbers to be finite. A familiar application of Rolle's

theorem shows that
(b.1) MO o) oo n(B) U)o

Can this sequence remain bounded? This is surely the case if f(t) is a

trigonometric polynomial. The truth of the converse is stated by the following

proposition due to Polya and Wiener ([18]):
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COROLLARY 3. If the sequence (4.1) is bounded and
(4.2) lim N(k) =2m ,

then f(t) 1is a trigonometric polynomial of exact order m .

Indeed, let (3.1) be the Fourler series of f(t) . It is known to

converge under our assumptions and the expansion of f(k)(t) is obtained

by formal differentiations of the expansion of f(t) . Let us assume

that for a certain n

2 2
(4.3) a- +1b> >0 .

It is clear then from the form of the Fourier series for f(k)(t) that

this series will satisfy the inequality (3.4, of Corollary 1, provided

only that k 1is sufficiently large, k > K say. But then by Corollary 1l

W s>y (#®) son, (1 x>x)

Thus (4.2) and (4.3) imply that

and f(t) must reduce to a trigonometric polynomial of order g <m . On

the other hand, if f(t) 1is such a polynomial, N(k) < 2q which implies

2m <29 or m<q, hence q=m and the theorem is established.
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5. The graphic behavior of V-means. We now wish tu discuss the shape-

breserving properties of the V-means which are implicitly contained in the

fundamental inequality
(5.1) z, (v ) <v (f) .

It shows that Vn(t) can't oscillate about zero more frequently than f(t)

Indeed, if 7y 1is

does. But there is nothing peculiar about the level zero.

any real, then f(t) = y implies Vn(t) = y . Thus we may replace in (5.1)

f and Vn by f -y and Vn - ¥ , respectively, obtaining the inequality

(5.2) Zc(Vn-y)_S vc(f-y) :

A second remark is based on the obvious known fau-t (See [5], p. 191)

that if f(t) is absolutely contlnuous then Vé(t) is the V-mean of f'(t) .

But then (5.1) immediately gives

(5.3) z2,(V!) < v (£')

¢t ' n’ —
This operation may naturally be repeated giving

(5.4) 2, (v )y <v (8

which is valid depending on how many derivatives f(t) posscsses. For

instance, if
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£(t) e C"

then the graph of vn(t) can't have more maxima, minima or pointsifof inflex-

ion than the corresponding numbers for the graph of f(t) .

It is desirable, however, to discuss this phenomenon for functions of a

lower degree of smoothness and the following developments aim to do that. We

consider the class Do of real periodic functions f(t) , of bounded variation,

normalized by 2f(t) = f(t+0) + f(t-0) . A subclass of D_ 1is the class D,

By f(t) € D,

of functions satisfying the classical Dirichlet conditions.

we mean that the circle can be dissected into a finite number of consecutive

open arcs in each of which f(t) 4is monotone in the wide sense.

With each f(t) € D, we associate an even non-negative integer S(f) ,

called the number of sense-reversals of f(t) and defined as follows:

Congider, for a given natural number k , the periodic sequence of ordinates

(5.5) e f(gﬁl) = f(vh) (h = 2x/k)

of period k , and the likewise periodic sequence of differences

Af = f(2ﬂgl)+lz) _ f(z_ltv_) :

v= 0,1,2,...,n-1 . We now define S(f) by

(5.6) S(f) = lim V’C(A‘fl)) = max Vc(Afu) .
k » @ k .
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The reader is urged to supply proof for the statements implied in this defini-
tion; it depends on an analysis of the finitely many points which liave no
neighborhood in which f(t) 1is monotone. If in addition to f(t) € D, we
assume that f(t) € C' then evidently

S(f) = Vc(fi) .

Our substitute for (5.3) for the class D, 1is given by the following

THEOREM 3. If f£(t) € D, then
(5-7) v (Vy) = 8(V ) <s(f) .

The proof 1s very simple. Besides the V-mean

we consider the approximating sums
v . (t) = < } w_(t-vh)f (h = 2x/k)

k k=5 'n vo? '
Replacing t by t+h we obtain

1
V_ (t+h) wn(t vh)fv+l

n,k k L
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and therefore

——

nzi___wn(t-vh)cdb .

v

IH

(5.8) Avn,k/h = (v (t+n) = v (t))/n =

n

By Lemma 3 , in view of (5.7), we obtain
v (av, /n) S vo(ar ) <s()
or
vc(AVn,k/h) <s(f) .

Because the difference quotient (5.8) converges to Vé(t) , 8 k -0 , for
all t , the last inequality implies (5.7).

There is a similar significant substitute of (5.4) for k=2 . In
order to formulate it we define a class of functions f£(t) which we denote
by D, : By f(t) € D, we mean that the circle can be dissected into a fin-

ite number of consecutive open arcs in each of which f(t) is cor "nuous and

convex, Oor concave, or linear. It is clear that

D,C D .

N
[

With each f(t) € D, we assoclate an even non-negative integer T(f) ,

2
called the number of turn-reversals of f(t) and defined as follows: Besides

the periodic sequence of second differences
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2
LIRS =f.v+ -2fu +fv-l

and define T(f) by

(5.9) T(f) = klffzo vc(azfv) = s;p Vc(52fv) .

Again e proof of the equality of the last two expressions requires the consid-
eration of the points (finite in number) which have no neighborhood in which

f(t) 1s convex, or concave. If in addition to f(t) € D, we assume that

f(t) € C" then evidently

() = v (") .

A substitute of (5.4) for k = 2 1is given by

THEOREM 4. If f(t) € D, then

(5.10) vc(vg) = T(Vn)‘f T(£) .

The proof is so very similar to the proof of Theorem 3 that it suffices
to indicate the main points. In place of (5.8) we now start from the second

order difference quotient

2 2
52Vn’k/h = (Vn,k(t+h) - 2Vn,k(t) + Vn,k(t-h))/h

1 E 2
= Ej—(l—): \) un(t-vh)s fv 1
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end observe that on the one hand it converges to V;(t) , on the other hand

by Lemma 3 and (5.9)
vc(aavn’k/h2)_5 ™£) .

This last inequality implies (5.10) on letting k - o

The fuvllowlng remarks concerning the slmplest elements of Dl and D2
are called for: 1. If f£(t) = const. then clearly S(f) =0 and T(f) =0 .
Conversely, either of these relations 1s casily seen to imply that f(t) =

const. 2. The first non-trivial. case i1s

(5.11) S(f) =2 .

Functions f(t) satisfying (5.11) are in a way the simplest non-constant

periodic functions and may aptly be called periodically monotone. Likewise

functions with

(5.12) T(f) = 2

may be called periodiéally convex.

It is easily shown that (5.12) implies (5.11). That these new terms are
appropriate is also shown by the following two statements:
1. If the perlodic function f(t) is monotone (non-constant) in

-n <t <n then S(f) =2, i.e., f(t) 1s periodically monotone.




2. If the periodic function f(t) 1s convex or concave (non-constant)

in -x <t <n then T(f) =2, i.e., f(t) 1s periodically convex.

Observe that the distinction between "increasing" and "decreasing" as
well as between "convex" and "concave", drops out for periodic functions.

We conclude our short excursus into "descriptive function theory" with a

few examples:

S(sin t) = T(sin t) = 2 .

S(|sin t]) = T(|sin t|) = 4 .

If f(t)=sin t +1 in (-n,0) and f(t) = sin t in (O,x) then

S(f) = (f) =6 .

If f(t) =sin t +t in 0 <t < 2n , then

s(f) = 2, (f) = 4 .

From these examples we see that

(5.13) s(£) < T(£)

and this inequality is generally true. We see this if we observe that for a

periodic sequence (5.5) we always have




.

k0.

2
5F
vc({;).f vc(Af\)‘S vc(5 o

In view ot (5.6), (5.9) and the corresponding relations

v (f) = lim v (f,) = max vc(fv) 5
k - k
we conclude thal
(5.14) v (f) <8(f) < T(£)

It is of some interest to show that the remarkable properties of the
third Cesaro means established by L. Fejér in his Theorems 1, 2 and 3
([2], p. B2 and p. 86) are also enjoyed by the de laVallée Poussin means

Vn(t) . Thus Fejér's work suggests the following

THEOREM 5. If f(t) Ls an odd periodic function which is positive and

concave in the range O <t <« , then

(5.15) 0 <V_(t) <f(t) if 0<t<n (n >1) .

Moreover, the function Vn(t) is also concave in 0 <t < .
The last statement and the first inequality (5.15) are easily proved.

Indeed, it ic clear that

(5.16) v (f) = 8(f) = T(f) = 2 5




-41-

Observe also that Vn(t) 0 if n>1, for Vn(t) = 0 would imply Sn(t) =0,
hence also vc(f).z 2n + 2 > k4 (by Corollary 2) which contradicts (5.16). By

Theorem 1 and (5.16) surely

(5.17) Z (V) =2

c'n

Since Vn(t) is a sine polynomial it vanishes at O and »x . By (5.17)

these zeros are simple and the only zeros of Vn(t) . Also by (5.16) and

Theorems 3 and 4 we conclude that

' A

These remarks show that Vn(t) or perhaps -Vn(t) enjoy the properties to

be established. That Vn(t) , rather than —Vn(t) , has these properties is

shown by observing that

V(o) = ¢ - | (cos %)2“'1 sin 3 £(1)ar , (e >0) ,

(obtained from (7) by differentiation) has a positive integrand and is there-

fore positive.

To establish the second inequality (5.15) or

(5.18) vn(t) < f(t) (C <t <n) ,




i v

is a little more troublesome and we resort to Fejer's own methoi. We consider

the "roof-function"

2 t if 0<t<a
(5.19) £(t) =
bﬁg if a<t<n (0<a<mx,b>0) ,

and denote again by f(t) its odd periodic extension. We now observe that

indeed

(5.20) %u)<ﬂw , (0<t<ax) ,

for these special functions. Since we already know from our previous dis-

cussion that Qn(t) is positive and concave in (0O,r) , the inequality (5.20)
is perfectly clear as soon &s we can prove that

(5.21) Vi) <f(0) , V'(x) >P(x)

These inequalities, however, follow immediately from previous rcmarks: Since

V'(t) 1is the V-mean of f'(t) . Since

f(t) 1is continuous, o

£1(0) = sup £'(t) , F'(xn) = inf T'(t) .

We conclude, for instance from (5.2), that
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B'(x) <V!(t) <f'(0) forail t .

The proof of the general inequality (5.18) now follows from the observation
that the function f(t) of Theorem 5 may be approximated by appropriate

linear combinations of roof-functions with positive coefficients.

6. Convex, and star-shaped, conformal maps of the circle. The following

introductory remark (ureviously made by one of us; see [10], pp. 226-227)
applies to any var’ation diminishing kernel @(t) as defined by the relations
(3), (4) and (5) of our Introduction.

Let

(6.1) f(t) = fl(t) + 1f2(t) (fl,f2 real-valued)

be a complex-valued continuous function of period 2n and let

2n
(6.2) g(t) = 2= | a(t-t)e(r)as

be its transform; g(t) 1s evidently also complex-valued periodic and we may

write
(6.3) g(t) = g (t) + 1g,(t) , (g ,8, real-valued) .

Since Q 1is real and (3) holds it follows that the transforms of fl(t),

fg(t) and 1 are gl(t), g2(t) and 1 , respectively. If A, B, C are
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arbitrary real constants {t follows that Agl(c) + BgQ(t) + C 1s the trans-

form of Afl(t) + Bf_(t) + C Since (L) 1s assused to be a variation
<

diminishing kernel, we conclude by (5) that the inequality

(6.4) vc(Agl(t)+Bg2(t)+C < vc(Afl(t)+Bf2(t)+C)

always holds,
The inequality (6.4) admits a remarkable geometric interpretation. Indeed,

let us denote by (f) the closed curve traced out by f(t) in the complex

[0,2n] , and let

plane of the variable 2z = x+iy as t varies in the range

{g] be the corresponding curve described by g(t) Let the following state-

ment, too simple to be called a theorem, be referred to as a

never crosses a straight line more often than

PRINCIPLE. The curve (g)

the curve (f} does.

For it Ax + Ry + C =0 L. then the two mem-

is the equation of a line

bers of the inequality (6.4) are identical with the total numbers of crossings

of L by (g) and (f} , respectively. In particular w> have the

(g} 1is interior to (f)

COROLLARY 4. If the curve (f} is convex then

and {g} 1is also convex.

Indeed, ({f} Dbeing convex, it crosses any L at most twice, hence also

crosses any L at most twice and is therefore convex. That (g} has no

{g}

points outside of ({f} follows already from the properties

2n

(6.5) a(t) >0, é% Q(tlat = 1
¢}

Y
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and in no way requires the sophisticated condition that Q(t) be variation
diminishing. On the other hand the conditions (6.5) are by themselves in-

sufficlent to enforce the convexity of (g) It is also true, however, that

the variation diminishing property of Q(t) 1is sufficient but far from neces-

sary for (g) to be convex. As our example we mention the periodic kernel

n/h if -h<t<h

(6.6) Q(t) =
0 if -x<t<h or h<t<nx (0 <h <=x) ,

which is readily shown to have the "convexity preserving" property of Corollary

4. However, (6.6) is not variation diminishing because it is not periodic

totally positive (See [4]).

We now turn to an application of these remarks to conformal maps of the

circle, in particular to a proof of Theorem 2 of the Introduction.

Let
(6.7) F(z) = z + c2z2 + e52” + ..s

be regular in the unlt circle. For a fixed value of r we consider the

complex-valued periodic function

(6.8) f(t;r) = F(reit) rett cquEEit + e (Ot< i TN

By (8) and (9) its V-means are



2n
vV (t;r) = é% wn(t-T)F(reiT)dT
o
= (%f) n+l n+2
or
(6.9) | v (t5r) = ¥ _(re'®)

where _!n(z) are the de la Vallée Poussin means of

2

= 1 {k 2n')reit + (2n )e r2e2it L ——" cnrnenit}

’

the power series as defined

by (15), with e, = 1 . We also record the more explicit expression

-] 2
Vo(z) = mpe+ (2&2)(3+2) ¢ 2

Our Theorem 2 seems now almost self-evident.

+ ..

n{n-1) ... 1 n
- (n+l)(0+2)...(20) ‘n® °

Indeed, if F(z) € K then

the curve [yn(reit)) is convex by (6.8), (6.9) and Corollary 4. This being

true for every r <1l , we conclude that Vn(z) €K .

for every n , then [Xn(reit)] is a convex curve

From the relation

Conversely, if Xn(z) € K

for all n and all r <1 .

lim Xn(reit) = F(re ")
n — oo
it
we conclude that also ({F(re °)} 1is convex. Hence F(z) € K .
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REMARK 1. In order to conclude from (17) that F(z) € K it is not neces-

sary to assume that the power series (6.7) converges in the unit circle or that

it converges at all. Rather the converse part of Theorem 2 holds for a formal

power series (6.7). For it is known (See e.g. [9], vol. II, p. 29) that the

assumptions (17) imply that all coefficients of the polynomial (6.10) are

bounded in absolute value by n/(n+l) . Letting n —» oo we obtain |c | <1

(v=1,2,... ) which clearly imply the convergence of (6.7) within the unit

cirecle.

REMARK 2. Let F(z) € K and hence !n(z) €K. Let D and D denote

the convex domains into which the unit circle is mapped by F(z) and Xn(z) R

respectively. We know by Corollary 4 that

(6.11) DCD .

At this point it is natural to suspect that more is true, namely that all

the inclusions

(6.12) D,c D, C ... €D C Dn+lC_

are valid, but we are unable to prove or disprove this.
REMARK 3. Since numerous elements of the class K are explicitly known,

Theorem 2 1s a ready source of polynomials belonging to K . Thus

(6.13) Fz) = T = 2 +2° + ...
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is in K because it maps the unit circle onto the half-plane Rz > -

N

The corresponding V-means

" 1 2 2 2
(6.14) _Yn\a) = (—25—)— {(n-:_ll) Z + (nfé) Z + 0 + Zn}
n

are a remarkable sequence of polynomials some extremal properties of which
might be discussed on another occasion. Of course (6.11) holds. Here the
convex boundary of Dn touches the line Rz = - % to an order of contact

which increases with n . Also the inclusions (6.12) can be verified in this

special case.

REMARK 4. Observe that *he image D, of the unit circle by El(z) = % z

in the circle
- : 1
(6.15) D, : lz| < = .

8y (6.11) we have D,C D for every F(z) € K . This proves the following

proposition: The circle (6.15) is covered by every convex map D and (6.15)

is the largest circle with this property. That Dl is the largest circle is

shown by the special function (6.13). This theorem is due to Study, [11],

p. 116, and our proof is really identical with Nehari's proof in [6], pp. 223-224.

REMARK 5. A comparison of Theorem 2 with Fejér's Theorem IV ([2], p. 87)
again shows the extent to which the de la Vallée Poussin means of a power series
are superior to its third Cesaro means as far as shape-preserving properties

are concerned.
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REMARK 6. In Art. 3 we have seen that from a knowledge of the section
(3.2) of the Fourier scsries (3.1) of f(t) we can infer the information
(3.3) concerning the zeros of f(t) . Is there a similar result for power

series? Specifically, let

X
F(z) = 2 c, 2z’ (e, =1)
o

converge for |z| <1 and let, for a certain value of n , its V-mean

INOER S ER SRR

n

be given and known to have a certailn numher of zeros within the unit circle.
Can we then draw any positive conclusion concerning the existence of zeros
of f(z) 1n the unit circle?

That the answer is negative 1s very simply shown as follows. With the

given o= 1l,c derive the expansion

5k slE
1’ ’*n

n n
log(l + C1Z + +ev +C 2 ) = bz 4 ...+ D2+l

But then

F(z) = e B licz4 .+t e

1s a zero-free entire function whose nth V-mean is precisely the given

Xn(z) .



In concluding this section we wish to point out similar applications
concerning the c¢lass X of power series Z;bvz” which map the unit circle
onto & univalent domain which 1s star-shaped with respect to the origin. It

is well known that the two classes K and X are related as follows:

[+ ]
LEMMA 5. X a,z’€¢ £ if and only if
1

But then Theorem 2 easily implies the following

COROLLARY 5. For

it is necessary and sufficient that

yn(z) € E:j for n=1,2,...



APPENDIX I

THE BERNGTEIN POLYNOMIALS

s The Bernstein construction is variation diminishing. The purpose of the

present Appendix 1s to furnish for functions f(x) defined in a finite inter-
val a theory analogous to that given in Parts I and II for periodic functions.
It is remarkable that such & theory is provided by the classical Bernstein poly-

nomials. Indeed, let f(x) be defined in [0,1] and let

(7.1) B, (x) L)1) (n>1)

n

n

2
=) ¢

o

be the corresponding Bernstein polynomial (See [5]). Let Z(Bn) denote the

number of zeros of Bn(x) in the open range (0,1) . We now state

THEOREM 6. Denoting by v(f) the number of changes of sign of f(x)

in [0,1] we have the inequa’ities

(7.2) v(Bn) _<_Z(Bn) <v(f) .

This result, an analogue of Theorem 1, can be derived as a special case
trom a general theorem of S. Karlin [1]. It admits, however, a very simple

direct proof. Indeed, with z = x/(l1-x) for O <x <1 , we have

o

B(x)

(l-x)n —

hence by Descartes' rule of signs
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Bn(x) = n
z(B,) = z( ) -z () )
O

Sv(r@) sve)

8. The graphic behavior of the Bernstein polynomials. If we write

Bn(x) = Bn(x;f) to indicate the dependence on f(x) , it is clear that
(8.1) Bn(x;Ax +B)=Ax+B .

But then (7.1) implies that Bn(x) - Ax - B is the Bernstein polynomial of

f(x) - Ax - B . Now (7.2) implies the

COROLLARY 6. If Ax + B 1is an arbitrary linear function then

(8.2) Z(Bn(x) - Ax - B) <v(f(x) - Ax - B) .

Intersecting the graphs of f(x) and Bn(x) by appropriate straight
lines y = Ax + B , the inequality (8.2) furnishes a good deal of informstion

concerning the shape of the graph of Bn(x) . Notice in particuiar the

COROLLARY 7. If f(x) is convex in [0,1] , possibly discontinuous at the

endpoints, but not linear in ([0,1] , then

1. Bn(x) is convex,
2. Bn(x) > f(x) if 0<x <1,

3. B_(0) = £(0) , B (1) = £(1) .



o

We may omit the simple proof based an Corollary 6.
Observe that the relatinn Qé(x;f) = Bn(x,f', is not valid. However a

simple calculation shows that (7.l) implies

n-1
B(x) =n 5 (*;hag x’(1-x)""Y
0

and

L n-2-v
B;(x) = n(n-1) 2___( v AT, x(1-x)
o)
where we have set
f\) =f(r%) (V:: O’u--,n)
Af = fF -f A2f = f =2f +f
y  y+l vV’ v T y42 TTy+l vy

(See Natanson [5], p. 179, fifth line from the bottom). The Theorems 3, 4
and 5 have precise analogues as will now be shown with a minimum of details.
The function classes D. and D2 have analogues in the present situation

1
and the numbers of sense-reversals and turn-reversals may again be defined by

the relations

S(£) = 1lim V(Afv) = sup v(éi;) (f e Dl) ,
n - o n
2 2
T(f) = 1im v(a fv)= sup v(ATP ) (£ € D2) 5
n - o n ¥
respectively.



As in the perlodic case we obtaln

THEOREM 7. If f(x) € D

1 then

S(Bn) = v(Br'l) <s(f) .

If f(x) € D, then

2

T(Bn) = v(BI'l) <T(f) .

If f(x) 1is odd about the point x =

Y]

, then B (x) 4is found to share
n

this property. As an analogue of Theorem 5 we have

THEOREM 8. If f(x) is odd about x = % , concave and non-negative in
% <x <1, positive in % < x <1, then also Bn(x) is concave in [%,l]
and
(8.3) o<Bn(x)<fix) if %<x<l .

Indeed, let us first observe the following: Because of the invariance
of linear functions expressed by (8.1), we may subtract from f£(x) the
linear function whose graph is the chord Jolning the extreme points
(0, £(0)) eand (1, f(1)) , without altering the assumptions on f(x) . Thus
without loss of generality we may assume that f(0) = f(1) = O . From this
point the proof 1is entirely similar to the proof of Theorem 5 in all details,

including the use of the roof-functions. Finally notice that the equality




is excluded in the second inequality (8.3). This is so because of the in-
equality (8.2) of Corollary 6; in the periodic case we only had the weaker

analogue (5.2).




APPENDIX II
A CONJECTURE ON POWER SERIES MAPPING A CIRCLE
ONTO A CONVEX DOMAIN

9. Sources snd forms of the conjecture. As stated in the Introduction, a

power series

3

2 n
(9.1) 812 + 8527 + 8327 + ..o + B2 + ... = f(2)

is said to belong to the class K , if 1t converges in the circle |z] <1

and maps this circle onto a convex domain. We say that the infinite sequence

of complex numbers
"1”‘2”‘3"")‘n”"

is a convexlty-preserving factor sequence if the series

2 3
xlalz + xgagz + x3a3z £ o bIE

necessarily belongs to K whenever (9.1) beloags to K . Let us apply such

a factor sequence to the simplest power series belonging to K , to the geo-

metric series

2
(9.2) 2 +2 +27 4 ... =g

We obtain
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e 3 n .
xlz+x2z +x3z EEEIR PN S
if Ll,xe,hs,... 1s a convexity-preserving factor sequence, the power series

(9.2) must necessarily belong to K . We state the conjecture that this ob-

vious necessary condition 1s also sufficient; that is, we formulate

CONJECTURE I. If both power series

3

2
8,2 + 8,2 + a3z + e

2 3
blz + b2z + b3z R

belong to K , also

2 g
alblz + a2b2z + a3b3z + 5.

belongs to K .g/

2/

One of the "intuitive sources" of the conjecture is the feeling that
(9.2) plays a "leading role" in K , that it "sets the fashion." Which one
of the two authors of this paper 1s the author of the conjecture will be

disclosed 1if and when the conjecture is proved.



In view of Lemma 5, the conjecture can be restated in other forms,

equivalent to the first.

CONJECTURE II. If the power series

a.z + 8 2e + a z3 +
l 2!—! 3 LI
belongs to K and
2 3
blz + bQZ + baz + cee
belongs to £ , then
2 3
alblz + agbgz + a3b3z + hale
belongs to Z .
CONJECTURE III. If both power series
a.z + 8 z2 + a z3 +
l 2 3 L N )
2 3
blz + bQZ + b3z + oae
belong to Z , also
a_ b a b a_b
11 22 2 3’73 3
_l‘ Z + 2 Z + 3 Z + e o e

belongs to I .



These three conjectures I, II and III are completely equivalent, they
stand and fall together. The third form hrings out most clearly the relation
to a conjecture that has been found, years ago and independently of each other,

by two of our friends, Professor S. Mandelbrojt and Professor M. Schiffer, and

which is published here with their permission:

CONJECTURE M 5. If both power series

8.z + 8.2° + 8.z +
l 2 3 * o
2 3
blz + bgz + b3z + see
are "schlicht" in the unit circle, also
albl - a2b2 Ze . a3b3 -
l 2 3 F e oo

is "schlicht" in the unit circle.

Whereas III is equivalent to I or II, it appears logically independent
of MS: As far as obvious conclusions from the statements go, III could be
true but MS false, or MS true yet III false, or both could be true or both
false. Still, the conjectures are obviously related and their joint consid-
eration may lead to various suggestions.

The conjJectures I, II and III are more "elementary" than MS and they
are certalnly more accessible; we succeeded in treating several of their par-

ticular cases and consequences.
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10. Verification of the conjecture in some particular cases. We sha.l exhibit

several particular series Z bnzn belonging to K which, convoluted with an
arbitrary series (9.1) belonging to K , generate a series I anbnzn belong-

ing to K .

(a) The polynomial (6.14) belongs to K . That its convolution with an

arbitrary series belonging to K necessarily belongs to K 1s precisely what

Theorem 2 asserts.,

(b) If the series (9.1) belongs to K , it belongs, a fortiori, to X .

Therefore, by Lemma 5, the series

belongs to K . This is another special case of conjecture I; that the series

2 3
A z 1
+._2_+_3_+°°°_log__.

maps the unit circle onto a convex domain follows from its relation to (9.2)
and from Lemma 5 but this fact can also be established directly (See [9],
vol. 1, p. 106, problem 114).

(¢) The result mentioned under (a) (Theorem 2) is due to the fact that
the V-means are variation-diminishing; cf. Art. 6. Any variation-diminishing
transformation on the circle leads to an analogous result, and so we obtain
especially the following (cf. [4]): Let g(z) be the product of e'722 "

where 7 >0 , with an entire function of genus 1, all coefficients and all

Zeros 92 which are real: then




G-

8

n
Z

\
/ 1 Giini

belongs to K , and, provided that (9.1) belongs to K , also

'
G
5 N

belongs to K . The term "entire function of genus 1" is used here in the
comprehensive sense, that 1s, it is supposed to include also entire functions
of genus O and polynomials (but, obviously, not the identically vanishing
polynomial); the case in which g(z) reduces to 2z was mentioned under (b).
(d) Let p and g denote two different given points on the unit circle
(lp| = |g| =1, p# g) . Assume that (9.1) belongs to K and let 2z des-
cribe a circle ccncentric with, and interior to, the unit circle. Then f(z)
describes a convex curve of which f(pz) - f(gz) represents a moving chord;
as it is easy to see geometrically this chord turns all the time in the same
sense: The arcus of the complex number f(pz) - f(gz) increases steadily.

That is, the power series

©

f(pz) - f(gz) ) , P _-g ,n
p-g —] n P8

belongs to £ (maps the unit circle onto & star-shaped domain) and so, by

Lemma 5, the power series
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belongs 0o K (cf. (6]). The series (10.1) is the convolution of (9.1) and

of that particular case of (10.1) in which a =1 ; this particular series

maps |z| <1 onto an infinite strip bounded by two parallels.

1l. Verification of some consequences. In the foregoing, we have dealt mainly

with form I of the conjecture, but now we chall consider its form III. We

assume, therefore, that the function (9.1) belongs to the class £ , that is,

it maps the circle |z]| <1 onto a star-shaped domain. We shall say that

(9.1) is normalized if

(11.1) 1

(a) We are given an integer n , n >2 . Let us consider the normal-

ized functions of the class £ and let us seek one for which |an| is a maxi-

mum. We leave aside the (easy) discussion of the existence and assume that

(9.1) is such a function with maximum |an| Now wz apply conjecture III

with bm =a for m=1,2,3,... ; the resulting series is again normalized

and so its n coefficient cannot have an absolute value exceeding the maxi-

mum; that is,

from which it follows that
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For series of the class I this inequality is well known and easily estab-
lished independently of the conjecture III. And so our previous reasoning
served only to enhance somewhat the plausibility of conjecture III. Yet the
same reasoning 1s also applicable to the conJjecture MS and reveals one of the
essential sources of this conjecture.

(b) The function f(z) belongs to the class £ if, and only if,

2f'(z) 12 5}
(11.2) T = 1 +t2xz 4202 + 2a3z + e

is regular in the circle |z]| <1 and has there n positive real part. This

will be the case if, and only if, the Hermitian for. of the variables

zo,zl,l Ol,zn
n _n

L3 20 Gt
k=0 [f=0

(@-v = av » by definition) is positive ’'definite or semidefinite) for
n=1,2,3,... . This well known important necessary end sufficient condi-
tion is due to Caratheodory and Toeplitz. It can also be expressed in terms

of the determinants
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1 al a2 . an
&) & % : C A
11. s ...
(11.4) S S -2
a-n a-n+l a-n+2 e 1

Now, see (9.1), the relation (11.2) can be written in the form

2 3
2alz . 2a2z , 2a. .z .
2 3 1 2 3 e
11. 2 600 =
(19515 8,2 + 82" + a3 + a, ze
or in the form
2a. z 2a z2 2 z3 a.z a z2
(11.6) PR R T = log(l + — + 3, )
l 2 3 e o al al .

and so we can express both an/al as a polynomial in the @ and an as a

polynomial in the a./al g

2
2
a (e, )™ + 2a
(11.7) Ei S 2
2!
i& i (zo:l)J + 2(2a3) + 3(ea))(2a,)
a, B 3!
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a
2
2 = —
SRty
2
a. - 28 8
e -2 13
(11.8) 2a, = x
1
3 2
a2 - 3ala2a3 + 3&lah
2. =
3 o3
1

It would be easy to write down (11.7' or (11.8) for general n , but we shall
not enter into details. Using (11.8) we could express the Hermitian form
(11.3) and the determinant (1l.4) in terms of the coefficients of the series
(9.1) and doing so we would render more explicit the necessary and sufficient
condition focr the class Z . Yet we postpone this consideration.

(¢) Now consider, besides (9.1), two other power series with coefficilents
bn and cn respectively, and let BD and Eﬂ be so linked to the b , and
70 and gn so linked to the c¢ , as @, and An are to the a . Thus we
have besides (11.5) (in all summations n = 1,2,3,... )

n
B,z )

(11.9) y bz = b2 exp(EZ L

n

n
. n _ }: 7n?
» | e = ¢z exp(2 )

Set
ab
(11.10) sl e,
n n

Now express an/al in terms of the a from (11.7), and exnress analogously
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bn/bl in terms of the B , then c /c, in terms of the a and B from

(11.10) and finally from relations analogous to (11.8), express 7 in terms

of the c/cl and so in terms of the a and B . This leads to

70 =0 ]
2
37,= GB,  + 2ap)
> 22
(11.11) #2ap, - 20:Bs
- 3
673 = 0363 + 303Blf32 + 2a3Bl

3
300,85 + 30,0818, - 62,0.B]

3
+2aiﬁ3 - 6055152 + “afﬂl

6

Not all details of the general formula for 7, are obvious; a few features

will be discussed under (e). The determinant c, (expressed in terms of the

y as A is in terms of the a , cf. (11.4)) becomes by virtue of (11.11)

a polynomial in the &, a, B and B . By the theory of Caratheodory and

Toeplitz, conjecture III 1s equivalent to

CONJECTURE IV, The 2n inequalities

A >0, Ay >0,..0,A >0 ,

AIP

B, >0, B, >0,...,B. >0 ,

2
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imply the n inequalities

€ >0, Ly >0,..0,C >0

and this holds for n = 1,2,3,... .

This formulation excludes the case of equality in all the 3n inequali-

ties considered. This is due to the fact that, without loss of generality, we

may suppose Zlanzn and anzn regular in |z]| <1 .
(d) The case n =1 of conjecture IV is trivial. In fact, if we assume
that the series are normalized, see (11.1), and introduce the soefficients of

the mapping functions, see (11.8), the statement that we have to prove reduces

to this:
The inequalities |a2| <2, |b2| <2
250,
imply 5 <2

which 1is obvious.
(e) The case a = 2 of conjecture IV was first established by Dr. G. A.
Hummel and can be proved as follows.

We take the serles as normalized, see (11.1), and set

we suppose, without loss of generality, that a >0, b >0 . We have to show:

The two inequalities




2 2 2 2
(11.12) iA-%?— <l-%—,IB-§-}:— <l’9h'
imply
2 2
(11.13) i%%'; <1-5‘%- .

(The first inequality (11.12) results from the condition A, >0, see (11.4),
by virtue of (11.8); it implies & <2 , and so the condition A >0 )

Let

3a2 ,b2
(ll-l)-l») A=T+u, B=QT+V .

By the hypothesis (11.12) of the theorem that we are about to prove
2

2
(11.15) lu| <1 -3, |v|<1-f’h- .

We derive from (11.14) and (11.15)
(11.16)

We assert that

a b
(11'17) l+"2—+?-T<3——E— 3
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in fact, this follows from a <2, b <2, since it is equivalent to

2 b2

(1--?;-)(1-T)>o .

The right hand side of (11.16) is equal to the left hand side of (11.17), and
so the combination of these two inequalities 1immediately yields the desired
conclusion (11.13).

(e) We consider now the expression of 7a in terms of the a and
for general n ; for the cases n = 1,2,3, see(ll.ll). The procedure that
led us to (11.11) shows that 7, 1s & polynomial in @ ,0y,...,& , B;,B,;-
B, with rational coefficients. Obviourly, by virtue of (11.10), 7, 1is
symmetric in the a and B . If we substitute pz for z in (11.5) or,
which 1s the same, we change an into pnan and an into pnan , there re-
sults a change, see again (11.10), of c ~into pncn and of y = into pnyn

therefore, 7n must be an isobaric polynomial in the a of weight n .

Finally, " must be of the form

5
(11.18) ) ) / 37 A3,

k=1 f=1

where

= p(n) is the number of partitions of the integer n ,

Al’A2""’Ap are the products of powers of weight n of al,az,...,an

ordered lexicographically so that

Il
(llll9) Aj_ = an, A2 - an—lCL_L,... Ap = al .

3

b4




Generally Ak is of the form

1 2 n
(11.20) Ak = al 02 ‘el an s

its weight 1k, + 2k, + 3k

1 5 = erexel ot nkn =n .

3
Bl’B2’°"’Bp are analogously expressed in terms of Bl,Be,...,ﬁn , and

(n) (n) _ .(n)
Jik are rational numbers, Jik = Jdpy -

For example

and, for n = 4

2 2 L
A1 = Q) A2 = a3ai, A3 = Q,, Ah = aeal, A5 =Q

the B are analogously defined and the matrix of the jgtg results from

9 2k 9 36 12
ok ok 24 -24 -48
9 2h -1 -k -28
36 -2h -4 -136 128
12 -48 -28 128 -64

if each of the 25 numbers displayed is divided by 90 .
We cannot exhibit the law of the dependence of jgﬁz on n in some OD-

viously useful manner, but we note here one property. If




=

it is easily seen from (11.9) that

bn/bl =n

and, therefore, by (11.10)

and so finally

s

for any choice of the Q. 5 this must be compatible with (11.18) and 80,

since Bl = 32 = el =

Bp 1 , by our choice of the B,

p 1 for k=1
5 () _
fm sz =
kl O fOI’ k=2,3,..',p

(f) The system of n complex numbers (al’QQ""’ah) » for which we
shall also use the more concise notation (a) , determines & point in

2n-dimensional Euclidean space. A point (@) belongs to the coefficient-

domain if, and only if, it corresponds by virtue of (11.5) to the initial

terms of a power serles of the class X . “he most remarkable boundary




point of the coefficient domain is the "Koebe-point" which corresponds to the

function
=D
z + 22° + 3z3 + oo = 2z(l-z) = .

OQur aim is to show that, for any given n , conjecture IV 1is true for two inter-
ior points of the coefficient domain which are both sufficiently close to the
Koebe-point.

Let us choose two arbitrary points (u) and (v) in the interior or
the coefficient domain. That is, cf. under (b), both Hermitian forms

_ _ — 3
(11.22) zl_ ) Y gPily 0 ZL_ ) Ve k%

d
/1

are positive definite. Let a, B and € denote positive numbers; « and
B are srbitrary and € so smali that o€ <1, Be <1 . The coefficient

domain s convex. Therefore, if we set

(11.23) a, = (1l-ea) + eau; , B = (1-¢B) + €pv,

v

for v=20, +1, + 2,...,+ n , the points (a) and (B) are in the interior

of the coefficient domain. If A, 1s given by (11.20)

A =1+ ea'ﬁk + 0(62)

where




w =k (u-1) + ky(uy-1) + ooo + k (u -1)

and 0(72) denotes & quantity of order not exceeding €© when € tends to

O . There is a similar expression for B, and finally, by (11.21),

)/

P p
N > (n)
(11.24) y =/ J B
0T (g 4 ks AB,

)
:__ 2L_J£é2[l + eaﬁk + eBVz] + 0(62)

= 1 + eol + ep¥, + 0(62)

2)

1+ ea(un-l) + es(vn-l) + 0(€

By virtue of (11.24)

N >—— =
i _7}{_321{4;2
= (l-€a - eB)|z_ + 2z, + ... + 2 |2
o] 1 n
r —
+ €Q 7.7
[/ Yk-F%%y
+ eﬁﬁf_ by v, 2.z, + 0(€°)
L/ w-ik#




and this Hermitian form is definite positive for sufficiently small €

the forms (11.22) are definite positive.

infinitesima] part of conjecture IV.

y slnce

With this, we have pbroved another
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